(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
rec(up(x)) →+ up(rec(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / up(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
rec,
sent,
no,
top,
checkThey will be analysed ascendingly in the following order:
sent < rec
rec < top
rec < check
sent < check
no < check
check < top
(8) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
sent, rec, no, top, check
They will be analysed ascendingly in the following order:
sent < rec
rec < top
rec < check
sent < check
no < check
check < top
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol sent.
(10) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
rec, no, top, check
They will be analysed ascendingly in the following order:
rec < top
rec < check
no < check
check < top
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol rec.
(12) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
no, top, check
They will be analysed ascendingly in the following order:
no < check
check < top
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol no.
(14) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
check, top
They will be analysed ascendingly in the following order:
check < top
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol check.
(16) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
top
(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(18) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
No more defined symbols left to analyse.